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LIQUID CRYSTALS, 1989, VOL. 5, No. 2, 725-734 

Shear-flow instabilities in non-flow-aligning nematic liquid crystals 

by I. ZURIGA? and F. M. LESLIE 
Mathematics Department, Strathclyde University, Glasgow, Scotland 

This paper investigates theoretically the stability of non-flow-aligning nematics 
in simple shear flow by analyzing the relevant continuum equations. With the aid 
of numerical techniques, it proves possible to predict thresholds for instability to 
perturbations both within and out of the shear plane, based on the full equations 
without approximations. The results obtained are consistent with corresponding 
experimental studies. 

1. Introduction 
The behaviour of a nematic liquid crystal in simple shear flow between parallel 

plates depends crucially upon the orientation of the initial alignment with respect to 
the plane defined by the imposed velocity vector and the normal to the plates, which 
is referred to as the shear plane. For example, if the alignment is orthogonal to the 
shear plane, there is a critical value of the rate of shear beyond which the alignment 
changes to a new configuration [l]. On the other hand, if the alignment lies initially 
in the shear plane, the flow can be stable, and for sufficiently large shear rates the 
alignment is uniform at a small angle to the streamlines [2]. However, there are some 
nematics that do not exhibit this uniform flow alignment for a range of temperature 
close to the smectic-nematic transition temperature. This was first reported by 
Gahwiller [3], who observed that for temperatures lower than a critical value, instead 
of flow alignment a turbulent state develops. In simple shear-flow experiments 
Pieranski and Guyon [4] found that the non-alignment is due to the change in sign of 
the viscosity coefficient a3 from negative to positive. When a3 is positive, they observed 
a critical shear rate at which the alignment comes out of the shear plane. Similar 
experiments were carried out by Cladis and Torza [5] in Couette flow between 
concentric cylinders for a nematic with a3 positive, and they found a first instability 
threshold at which the alignment changes abruptly to a new configuration, but after 
this instability, called tumbling, the alignment remains in the shear plane. These 
somewhat conflicting observations have remained unexplained. 

In a recent paper Zuiiiga and Leslie [6] investigate the stability of plane shear flow, 
and employed numerical methods to solve the relevant equations, although they 
adopted some approximations that may not always be reasonable. A review of earlier 
theoretical work is given in 53. In the present paper we consider the full equations 
without approximations and find new instability effects. However, our conclusions 
are essentially similar to those in the simplified case, and are consistent with the 
experiments of Pieranski and Guyon [4]. Our results therefore help to clarify 
the somewhat conflicting experimental evidence, since they tend to confirm that the 
Cladis and Torza instabilities [5] are possibily peculiar to Couette flow, and so should 
not be compared with those in plane shear flow. 

t Permanent address: Departamento de Fisica Fundamental, U.N.E.D., Apdo. Correos 
50487, 28080 Madrid, Spain. 
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726 I. Zuiiiga and F. M. Leslie 

2. Basic equations 
Consider a layer of nematic confined between two infinite parallel plates a distance 

2h apart, which are sheared with constant velocity Y in opposite directions along a 
straight line in their plane. We choose a system of Cartesian axes such that the y axis 
is normal to the bounding plates, with the x axis along the direction of shear and the 
origin in the centre of the layer. With this choice, it is reasonable to consider the 
velocity v and the director n to be of the following forms: 

} (2.1) 
u x  = U ( Y ,  4 3  vy = 0, u z  = 4 Y ,  0, 
n ,  = cos 0 cos 4, ny = sin O cos 4, n, = sin 4, 

where 0 and 4 are also functions of y and t. In these expressions, the velocity 
components, the spatial coordinate and time have been made dimensionless by using 
h as the natural length scale and y l  h 2 / K l  as the time scale, where K ,  is a Frank constant 
and y I  is the twist viscosity coefficient (see later). Since we examine small perturbations 
of steady shear flow, the continuum equations are linearized with respect to the 
variables v, 4 and 8 about the steady in-plane solution with these variables zero, the 
dot denoting the time derivative. In this event, the resulting equations with these 
scalings, reduce to 

d 
d0 - [”f(8)(8’)2] - 28 - (1 + 1 cos 28)u’ = 0, 

[2u’g(O) + (1 + 1 cos 28)BI’ = 2Ak,  (2 .3)  

[v’g,(O) + u‘g2(8)4 + ad sin 81’ = A 6 ,  (2.5) 

[ . f l ( 8 ) ~ ’ ] ’  + [.fi(8) + Au‘ sin 0 cos 814 - 6 - a d  sin 0 = 0, (2.4) 

where 

Klf(8) = K,  + (K3 - K , )  sin2 8, 

K,f , (O)  = K2 + (K3 - K 2 )  sin2 0, 
KIf2(O) = 8”(K2 - Kl) sin 0 cos 0 

- ( 8 ’ ) 2 { ( 3 ~ 2  - K,  - 2 K 3 )  sin2 8 - K ~ }  

2y,g(8) = a4 + (a7 + a6) cos2d + (as - a,) sin20 

+ l a ,  sin’ 8 cos’ 8, 

2ylgl(0) = a4 + (a, - a2)  sin2 0 ,  
2ylg2(8) = (a3 + ct6 + 2al sin2 0) cos 8, 

i Y I  = a3 - a2, y2 = a6 - a5 = a3 + a23 
and aI . . . a6 are viscous coefficients, K , ,  K2 and K3 are elastic constants, @ is the 
density, and the prime denotes the dimensionless spatial derivative. 

Assuming that there is strong anchoring at the plates and that the initial alignment 
is uniform and in the shear plane, the boundary conditions are 

u(1) = -u ( -1 )  = v, v(l)  = v(-1) = 0, I/ = y , h Y / K 1  

@ ( I )  = Ow, @(-I )  = 8, + nr, 4(1) = 4(-1) = 0, 
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Shear-$ow instabilities in nematics 727 

where n is an integer. The angle 8, can take any value, but here we consider only the 
values zero and in that correspond to the two principal configurations of exper- 
imental interest. 

For small shear rates we expect a steady state in which the director lies in the shear 
plane with no transverse velocity, i.e. q5 and z1 are both zero. In this event, (2.2)-(2.5) 
reduce to 

d a(l + I I  cos 28) 
-$j [f(e)e”I - g(e) 

u’g(8) = a, J 
where a is a positive constant equal to the non-dimensional stress exerted on the 
moving plates. 

To study the stability of the steady solution of (2.8), we consider both pertur- 
bations 6, $ out of the shear plane and perturbations 9, $ in the shear plane of the 
form 

(k  d , &  $1 = [ W Y ) ,  U Y ) ,  @(Y),  @(Y)le-*J, (2.9) 
with o real. The equations governing these perturbations follow by substitution of the 
perturbed solution (u + 9, ij, 8 + 0, $) into (2.2)-(2.5), neglecting second-order 
terms in the perturbations. The inertial terms AU and Air may be neglected since they 
are very small ( A  % compared with 0 and 4. The quantity A can be interpreted 
as the ratio of the characteristic time for damping of velocity fluctuations and that for 
director fluctuations. Thus, by neglecting inertial terms, we are assuming that velocity 
fluctuations can be regarded as being independent of time compared with director 
fluctuations. Using (2.3) and (2.5) to eliminate u and o in (2.2) and (2.4), Currie [7] 
derived the following two Sturm-Liouville equations for the perturbation @ and 0: 

Owing to the non-linearity of (2.8), the steady solution 8( y )  is not readily obtainable 
in explicit form, and consequently the coefficients in the equations are not expressible 
in convenient analytic forms. 

With strong anchoring of the director at the plates, the boundary conditions for 
the perturbations are 

@(* 1) = @(* 1) = 0. (2.12) 

Given that (2.10) and (2.1 1) are uncoupled, they lead to two independent neutral- 
stability curves. The steady solution is unstable to perturbations out of the shear plane 
if there is a shear rate a for which w0 is negative, and similarly it is unstable to 
perturbations in the shear plane if o, is less than zero. 
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728 I. Zuiiiga and F. M. Leslie 

3. Simplified models 
In order to make progress with the in-plane equations (2.8), previous authors have 

adopted the two simplifications 

(i) al  = 0, (ii) K ,  = K2 = K3 = K .  (3.1) 

For nematics with CI, negative, Currie and MacSithigh [8] have used these approxi- 
mations and have discussed the stability and dissipation of a number of possible 
solutions of (2.8) subject to the conditions (2.7). In this way, they show that the system 
adopts a solution that is symmetric in y and has a single maximum. Thus this solution 
satisfies 

qy) = o ( - ~ ) ,  oyo) = 0, e(o) = em, (3.2) 

whcrc 0, is the maximum tilt angle across the gap. With the approximations (3. l), the 
equations (2.8) integrate to yield 

(0')' = 2@"8) - F(o,)] ,  

2 p  a4 + a, + M29 2% = a4 + M-1 + a62 2Vc = a4 + CIS - @ 2 .  

In an earlier paper Pikin [9] studied the stability of an approximate solution of (2.8), 
valid only for small values of the angle B such that 0' 4 1. Considering only pertur- 
bations in the shear plane, he showed analytically that, when the ratio a3/ct2 is positive, 
the flow is stable to infinitesimal perturbations at  all values of the velocity Y,  but that 
there is a critical value V,  above which his approximate solution becomes unstable 
when a,/az is negative. 

Using a finite-difference scheme and these approximations (3. l) ,  Manneville [lo] 
integrates the two-dimensional equations (2.8) numerically, and found that for a 
certain range of velocities V of the plates two different solutions coexist when ct3 is 
positive. Each solution corrcsponds to different values of Om, which are fn apart. The 
tumbling observed by Cladis and Torza [5] is then explained as a discontinuous jump 
from one solution to the other. Carlsson [l 13 integrated (3.3) and the second of (2.8) 
by quadrature, and showed that thc function Q,( V )  is multivalued for small negative 
values of the ratio a,/a,. In that event the tumbling should disappear as the tempera- 
ture decreases and approaches the smectic-nematic transition. However, this is in 
apparent conflict with the experimental observations of Cladis and Torza (see 
figure 2(a )  in [ 5 ] ) .  

All of these papers seem to give some support to the tumbling instability found 
by Cladis and Torza [5], in conflict with the findings of Pieranski and Guyon [4]. 
However, an initial assumption that the director remains in the shear plane can hardly 
explain an instability with the director departing from the shear plane. The need to 
consider perturbations out of the shear plane was first appreciated by Pieranski, 
Guyon and Pikin [12], and, making further approximations over and above those in 
( 3 .  I ) ,  they found an instability threshold at which the director comes out of the plane. 
The value of this threshold is about twice as large as that corresponding to instability 
to perturbations in the plane, the latter calculated numerically using Pikin's analysis 
[9]. However, as the authors acknowledged, the analysis is valid only for shear rates 
smaller than that corresponding to the first threshold. 
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Shear-@ow instabilities in nematics 729 

In a recent paper Zuiiiga and Leslie [6] have obtained a numerical solution of (3.3) 
and the second of (2.8), and have examined its stability with respect to perturbations 
both out of and in the shear plane by solving (2.10) and (2.1 1) with the simplifications 
(3.1). The calculations employ three different sets of values for the viscosities, but the 
same value for the elastic constant. It is possible to characterize the sets of viscosities 
by the value of the ratio 

E = %/I@2l. (3.4) 
The critical maximum tilt angle calculated for the instability out of the plane in the 
planar configuration is quite large, varying between 180" and 130" for the different 
viscosity values used (see table I in [6]). For the homeotropic configuration the same 
angle is found to be slightly greater than 90" for all three sets of viscosity values. On 
the other hand, the instability to perturbations in the plane depends strongly upon E 

(see figures 1 and 2), the solution becoming stable as E increases. The critical maximum 
tilt angle is again close to 90" in the homeotropic configuration for the three sets of 
constants, but in the planar configuration this value tends to zero with E .  In fact, when 
E is equal to two tumblings occur before the solution becomes unstable to 
perturbations out of the plane. The first tumbling corresponds to a jump from 0, with 
value -2.2" to - 170°, and this new state is stable until 0, becomes larger than a 
second threshold at - 18Io, but now this instability will take the director out of the 
plane since the new configuration is unstable to out-of-plane perturbations. Although 
this is similar to the observations of Cladis and Torza [5],  they used a different 
geometry (cylindrical) and configuration (homeotropic). 

Except in extreme cases when E is small compared with unity, Zuiiiga and Leslie 
have found that the director comes out of the plane following the instability. For their 
second set of viscosity values, E is relatively small and close to the value relevant to 
the experiments by Pieranski and Guyon [4]. In this case tumbling occurs first, but the 
new configuration is soon unstable to out of plane perturbations. For larger values 
of E ,  there is no tumbling, and the instability taking the director out of the plane occurs 
first. 

4. Numerical studies of the full equations 
Near the smectic-nematic transition the viscous coefficients cq , u3 and a6 and the 

elastic constants K2 and K3 diverge, while Kl , u 2 ,  ci4 and a, remain finite. Therefore in 
(3.1) neither the one-elastic-constant approximation nor the assumption that aI  is 
zero can be justified. Near the temperature at  which a3 becomes positive, the term cxI 
does not seem to be important in the viscosity function g(0) .  On the other hand, the 
twist elastic constant K, is always smaller than K3 and Kl (2K2 % K3),  and so should 
play a role in the instability out of the plane. In order to study the effects of the two 
approximations in (3. l), we consider the full equations without the approximations. 

The integration of the steady solution of the system of non-linear ordinary 
differential equations (2.8) subject to the boundary conditions (2.7) was achieved by 
means of a finite-difference technique with deferred correction and Newton inter- 
action. We have used a NAG routine based on the technique described in [13]. For 
a given value of the shear rate a, the NAG routine, supplied with an initial guess for 
the profiles, iterates until the difference between two successive solutions is within a 
small prescribed tolerance; in this way, the steady solutions O( y )  and u( y )  could be 
obtained to any desired accuracy. For the range of values of a in which there are two 
solutions, both are found by choosing an appropriate initial guess. Starting with 
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730 I. Zciiiga and F. M. Leslie 

Pm /deg 
360 

315- 

270 - 

225. 

180 - 

Pm /deg 
360 

315- 

270 - 

225. 

180 - 

HOMEOTROPIC 
135 - 

90 - 
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Figure 1. The orientation at the plates is homeotropic. p,,, = I@,,, - 3.1 is the maximum tilt 
angle and V is the non-dimensional velocity. In this figure and in figure 2 we have used 
set 3 of the material constants, but with a, = 0 and K ,  = K, = K3 = lo-’’ N in order 
to use (2.8) and (3.3). 

a small value of a and incrementing to higher values, at each stage using as the initial 
guess the previous solution, we eventually encounter the tumbling (point A, figure l), 
which is a jump to the second solution at point B. However, using this second solution 
as initial guess and decreasing the value of a, the upper branch to the point C at which 
one jumps back to the first solution at D is followed. This hysteresis was avoided in 
the simplified model [ l l ,  61 because by quadrature of (3.3) it is possible to o h i n  a 
as a function of Om, which is a single-valued relation (whereas 61, is a multivalued func- 
tion of V; see figures 1 and 2). Figures 3 and 4 give typical director and velocity profiles. 

For each solution O( y )  we have computed the eigenvalue of both Sturm-Liouville 
equations (2.10) and (2.1 1) subject to the boundary conditions (2.12). Instead of the 
Galerkin method used in the previous paper [6], we obtained the eigenvalues by means 
of a shooting method with a Runge-Kutta-Merson integration. A comparison of the 
results from the Galerkin method with those from the shooting method gives a useful 
check on the accuracy of the results. 

We have used several sets of material constants taken from data for 4-u-octyl-4’- 
cyanobiphenyl (8CB) some of which ake shown in table 1. The results of the calcu- 
lations are presented in table 2. They show that the approximate steady solution is 
close to the exact one, but for the exact solution there is a slight additional stabilizing 
effect due to the extra viscosity cq. The approximate analysis is very good for 
describing the instability to perturbations in the plane because it essentially reflects the 
coexistence of two solutions for certain ranges of values of the shear rate. This is why 
the stability analysis developed by Pikin [9] gives accurate results. On the other hand, 
a dramatic reduction of the threshold for instability out of the plane is obtained. It 
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Shear-flow instabilities in nernatics 73 1 

315- 

270- 

225 - 

180 - 

135 - 

90 - 

PLANAR 

Figure 2. The orientation at the plates is planar. 0, is the maximum tilt angle and V the 
non-dimensional velocity. We have used the same values of the material constants as in 
figure 1. 
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Figure 3. The tilt angle across the layer for two values of the shear rate, using set 3 of the 
material constants. 

is rather surprising that this reduction takes place even if only one of the approximations 
(3.1) is removed. This can be understood by inspection of (2.10), which gives the total 
torque in the x direction. The first term is a stabilizing elastic torque, whereas the 
second term is a destabilizing torque, which has a contributionf, (8) from the defor- 
mation of the director and a viscous torque proportional to a. When these stabilizing 
and destabilizing torques cancel each other, the solution will be marginally stable. The 
important contribution to the destabilizing torque when K2 # K I  is through f ,  (O), 
and the corresponding contribution from CI, is through g2(8 ) .  This latter contribution 
is significant when a3 + a6 is small compared with 2a1 sin’ 8; since is generally 
negative, this is likely to occur when a3 is positive and approximately equal to la61. 
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-- -. - 
1 I 1 I I 1 

-0.8 -0.6 -0.4 -0.2 00 0.2 0.4 0.6 0.8 

VI -VN 

Figure 4. The difference between the non-dimensional velocity profile for the nematic VN and 
the corresponding velocity profile for an istropic liquid 6 ,  again using set 3 of the 
material constants. 

Set 

Table 1. Material constants. 

1 2 3 4 

a,/Pas 
u,/Pa s 
cc,/Pa s 
cr, /Pa s 
q/Pa s 
u6 /Pa s 
10" K, /N 
10" Kz/N 
10" K,/N 
i: 

0.026 0.014 

0,825 x 0.15 x 
0.05 0.049 
0.043 0.036 

1.29 0.90 
0.60 0.40 
1.30 0.90 
0016 0-03 1 

- 0.052 - 0.049 

-0.82 x lo-' -0.011 

0.038 0.0078 

0.305 x 0.42 x lo-* 
0.052 0.048 
0.047 0.026 

-0.84 x lo-' -0.014 
1.20 0.70 
0.56 0.35 
1.20 0.67 
0.052 0.093 

- 0.059 - 0.045 

5 6 
~- 

0.134 0.39 
~ 0.070 - 0.070 

0.014 0.027 
0,056 0.057 
0,053 0.059 

-0.29 x lo..' 0.016 
1.40 1.45 
0.70 0.90 
2.10 2.80 
0-2 0.39 

Viscosity values are taken from [14, 151 and elastic constants from [16, 171. 

Table 2. Stability in terms of maximum tilt angle B,. 

Planar, 0, = 0' Homeotropic, 8, = 90" 
- __ -~ 

E e: eyp  K 0:" i" 6P, jO v, 
0.0 16 - 10.3 - 9.2 9.9 - 4.0 - 4.0 69.4 
0.03 I - 22.3 - 13.2 7.4 - 7.0 - 5.7 46.0 
0.053 - 18.3 - 14.9 6.0 - 7.1 - 7.4 33.2 
0.093 - 177.6 - 25.8 5.0 - 10.9 - 10.4 22.9 
0.20 - 183.31- - 22.3 3.8 - 57.3 - 11.2 15.8 
0.39 - 160.41- - 23.5 3.2 22.9 - 11.5 11.9 

@" and BEut are the critical values of 8,. Thus the solution is stable to perturbations in the 
shear plane when Ow > 0, > Bp, and is stable to perturbations out of the shear plane when 

V ,  is the non-dimensional velocity of the top plate corresponding to the first instability. The 
actual velocity ^y, is equal to K ,  K/y ,h .  Note that the use of Y and h differs by a factor 2 in 
the present paper from that in [6], this implying a corresponding factor 4 in the critical value 
for the scale velocity. 

t These values do not correspond to an instability but rather to a very sharp continuous 
tumbling. 

ow > om > e:"t. 
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Shear-flow instabilities in nematics 733 

With the full equations, the solution first becomes unstable to perturbations out 
of the plane for all sets of constants that we have considered, except in single instances 
for sets 3 and 6 when the initial orientation is homeotropic. However, the tumbling 
instability produces a tilt configuration that is immediately unstable to perturbations 
out of the plane. It is also interesting to note that the critical velocity V,  for stability 
increases (apparently without bound) as E tends to zero, but tends to a (non-zero) 
constant value for large E .  This dependence of the critical velocity on E corresponds 
to that found in the experiments of Pieranski, Guyon and Pikin [12]. It also corresponds 
to the dependence found by Cladis and Torza [ S ]  of the critical velocity for the first 
tumbling on temperature, i.e. on E .  As we have explained, the theoretical explanation 
for the tumbling, namely that 0, is a multivalued function of V ,  is valid only for small 
E .  Therefore, even if an instability out of the plane did not arise, the nature of tumbling 
could not be explained in terms of plane flow. 

5. Conclusions 
A numerical integration of the basic steady solution in simple shear flow has been 

obtained. Without the usual approximations adopted by previous authors, we have 
studied the stability of the solution to certain perturbations both in and out of the 
plane, and find in general that there is a critical value for the shear rate above which 
the solution becomes unstable out of the plane. This is the case both for homeotropic 
and for planar configurations, and for a number of sets of material constants. The 
different sets of material constants from data on 8CB were chosen in order to 
investigate the dependence of the instability threshold on temperature. All our results 
are consistent with the experiments of Pieranski and Guyon [4, 121. This work 
therefore clarifies the apparently conflicting evidence provided by the experiments of 
Cladis and Torza [5] and those of Pieranski and Guyon [4]. Our results suggest that 
the tumbling observed in the former experiments may not be explained by means of 
an analysis of plane shear flow, and is more likely to be associated with the cylindrical 
geometry used in the experiments. However, before drawing too firm conclusions, 
perhaps some consideration should be given to other selections of material parameters, 
and possibly, also more general perturbations notwithstanding the experimental 
evidence of apparent homogeneous instabilities. 

I. Zuiiiga is grateful to the Science and Engineering Research Council (U.K.) and 
to the Ministerio de Educacibn y Ciencia (Spain) for support to allow several visits 
to Strathclyde University. Also both authors thank Dr B. R. Duffy for helpful 
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